
Finite Horizon Analysis of Markov Chains with
the Murϕ Verifier�

Giuseppe Della Penna1, Benedetto Intrigila1, Igor Melatti1, Enrico Tronci2,
and Marisa Venturini Zilli2

1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{dellapenna,intrigila,melatti}@di.univaq.it

2 Dip. di Informatica Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy
{tronci,zilli}@dsi.uniroma1.it

Abstract. In this paper we present an explicit disk based verification
algorithm for Probabilistic Systems defining discrete time/finite state
Markov Chains. Given a Markov Chain and an integer k (horizon), our
algorithm checks whether the probability of reaching an error state in at
most k steps is below a given threshold.
We present an implementation of our algorithm within a suitable ex-
tension of the Murϕ verifier. We call the resulting probabilistic model
checker FHP-Murϕ (Finite Horizon Probabilistic Murϕ).
We present experimental results comparing FHP-Murϕ with (a finite
horizon subset of) PRISM, a state-of-the-art symbolic model checker
for Markov Chains. Our experimental results show that FHP-Murϕ can
handle systems that are out of reach for PRISM, namely those involving
arithmetic operations on the state variables (e.g. hybrid systems).

1 Introduction

Model checking techniques [5,11,16,15,21,28] are widely used to verify correctness
of digital hardware, embedded software and protocols by modeling such systems
as Nondeterministic Finite State Systems (NFSSs).

However, there are many reactive systems that exhibit uncertainty in their
behaviour, i.e. which are stochastic systems. Examples of such systems are: fault
tolerant systems, randomized distributed protocols and communication proto-
cols. Typically stochastic systems cannot be conveniently modeled using NFSSs.
However, they can often be modeled by Markov Chains [2,12]. Roughly spea-
king, a Markov Chain can be seen as an automaton labelled with (outgoing)
probabilities on its transitions.

For stochastic systems correctness can only be stated using a probabilistic
approach, e.g. using a Probabilistic Logic (e.g. [32,8,13]). This motivates the de-
velopment of Probabilistic Model Checkers [9,1,17], i.e. of model checking algo-
rithms and tools whose goal is to automatically verify (probabilistic) properties
� This research has been partially supported by MURST projects: MEFISTO and

SAHARA.

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 394–409, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 395

of stochastic systems (typically Markov Chains). For example, a probabilistic
model checker may automatically verify a system property like “the probability
that a message is not delivered after 0.1 seconds is less than 0.80”.

Many methods have been proposed for probabilistic model checking, e.g. [10,
3,8,13,14,19,24,27,32].

To the best of our knowledge, currently, the state-of-the-art probabilistic mo-
del checker is PRISM [25,1,18]. PRISM overcomes the limitations due to the use
of linear algebra packages in Markov Chain analysis by using Multi Terminal
Binary Decision Diagrams (MTBDDs) [6], a generalization of Ordered Binary
Decision Diagrams (OBDDs) [4] allowing real numbers in the interval [0, 1] on
terminal nodes. More precisely, PRISM can carry out the required Markov Chain
analysis using a matrix based approach (based on linear algebra packages), a
symbolic approach (based on the CUDD package [7]) as well as a hybrid ap-
proach. The user can choose the best approach for the problem at hand.

Here we are mainly interested in automatic analysis of discrete time/finite
state Markov Chains modeling Discrete Time Hybrid Systems. Such Markov
Chains can in principle be analyzed using PRISM. However, our experience is
that, using PRISM on our systems, quite soon we run into a state explosion
problem, i.e. we run out of memory because of the huge OBDDs built during the
model checking process. This is due to the fact that hybrid systems dynamics
typically entails many arithmetical operations on the state variables. This makes
life very hard for OBDDs, thus making usage of a symbolic probabilistic model
checker (e.g. like PRISM) on such systems rather problematic.

Indeed our experience shows that Explicit Model Checking can outperform
Symbolic Model Checking in automatic analysis of Hybrid Control Systems [22].
This suggested us to explore the possibility of devising an explicit disk based
algorithm for automatic Finite Horizon safety analysis of Markov Chains. In
this paper we present our algorithm as well as experimental results showing its
effectiveness. Our results can be summarized as follows.

– We present (Sections 3, 4) an explicit algorithm for automatic verification
of discrete time/finite state Markov Chains. Given a Markov Chain M, our
algorithm checks wheter the probability of reaching a given state s within k
steps is less than a given bound p. Our algorithm is disk based, thus, because
of the large size of modern hard disks, state explosion is hardly a problem
for us. Computation time instead is our bottleneck. Our algorithm can trade
RAM memory with computation time, i.e. the more RAM available the faster
our computation. To the best of our knowledge, this is the first time that
such a disk based algorithm for probabilistic model checking is proposed.

– We present (Sections 5) an implementation of our algorithm within the Murϕ
[21] verifier. We call the resulting probabilistic model checker FHP-Murϕ
(Finite Horizon Probabilistic Murϕ).

– We present (Section 6.1) experimental results comparing FHP-Murϕ with
PRISM on two suitably modified versions of the dining philosophers protocol
included in the PRISM distribution. Our experimental results show that
FHP-Murϕ can handle systems that are out of reach for PRISM. However,

396 G. Della Penna et al.

as long as PRISM does not hit state explosion, PRISM is faster than FHP-
Murϕ (as to be expected).
Note however that PRISM can handle more general models than FHP-Murϕ,
and can verify more general properties (namely all PCTL [13] properties)
than FHP-Murϕ. In fact, FHP-Murϕ can only verify finite horizon safety
properties for Markov Chains, a subclass (although an important one) of the
verification tasks that PRISM can handle.

– We present (Section 6.2) experimental results on using FHP-Murϕ for a
probabilistic analysis of a “real world” hybrid system, namely the Turbogas
Control System of the Co-generative power plant described in [22]. Because
of the arithmetic operations involved in the definition of system dynamics,
this hybrid system is out of reach for OBDDs (and thus for PRISM), whereas
FHP-Murϕ can complete (finite horizon) verification within reasonable time.

2 Basic Notation

Let S be a finite set. We regard functions from S to the real interval [0, 1] and
functions from S × S to [0, 1] as row vectors and as matrices, respectively. If x
is a vector and s ∈ S we also write xs or (x)s for x(s). If P is a matrix and
s, t ∈ S we also write Ps,t or (P)s,t for P(s, t). On vectors and matrices we
use the standard matrix operations. Namely: xP is the row vector y s.t. ys =∑

j∈S xjPj,s and AB is the matrix C s.t. Cs,t =
∑

j∈S As,jBj,t. We define An

in the usual way, i.e.: A0 = I, An+1 = AnA, where I (the identity matrix) is
the matrix defined as follows: I(s, j) = if (s = j) then 1 else 0. We denote with
B the set {0, 1} of boolean values. As usual 0 stands for false and 1 stands for
true.

We give some basic definitions on Markov Chains. For further details see,
e.g. [2]. A distribution on S is a function x : S → [0, 1] s.t.

∑
i∈S x(i) = 1.

Thus a distribution on S can be regarded as a |S|-dimensional row vector x. A
distribution x represents state j ∈ S iff x(j) = 1 (thus x(i) = 0 when i �= j).
If distribution x represents s ∈ S, by abuse of language we also write x ∈ S
to mean that distribution x represents a state and we use x in place of the
element of S represented by x. In the following we often represent states using
distributions. This allows us to use matrix notation to define our computations.

Definition 1. 1. A Discrete Time Markov Chain (just Markov Chain in the
following) is a triple M = (S,P, q) where: S is a finite set (of states),
q ∈ S and P : S × S → [0, 1] is a transition matrix, i.e. for all s ∈ S,∑

t∈S P(s, t) = 1. (We included the initial state q in the Markov Chain
definition since in our context this will often shorten our notation.)

2. An execution sequence (or path) in the Markov Chain M = (S,P, q) is
a nonempty (finite or infinite) sequence π = s0s1s2 . . . where si are states
and P(si, si+1) > 0, i = 0, 1, If π = s0s1s2 . . . we write π(k) for sk. The
length of a finite path π = s0s1s2 . . . sk is k (number of transitions), whereas
the length of an infinite path is ω. We denote with |π| the length of π. We

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 397

denote with Path(M, s) the set of infinite paths π in M s.t. π(0) = s. If
M = (S,P, q) we write also Path(M) for Path(M, q).

3. For s ∈ S we denote with
∑

(s) the smallest σ-algebra on Path(M, s)
which, for any finite path ρ starting at s, contains the basic cylinders {
π ∈ Path(M, s) | ρ is a prefix of π }. The probability measure Pr on

∑
(s)

is the unique measure with Pr({π ∈ Path(M, s)|ρ is a prefix of π}) = Pr(ρ)
=

∏k−1
i=0 P(ρ(i), ρ(i + 1)) = P(ρ(0), ρ(1))P(ρ(1), ρ(2)) · · ·P(ρ(k − 1), ρ(k)),

where k = |ρ|.
E.g. given distribution x, the distribution y obtained by one execution step

of Markov Chain M = (S,P, q) is computed as: y = xP. In particular if y =
xP and x(s) = 1 we have that ∀t[y(t) = (P)s,t].

3 Finite Horizon Safety Verification of Markov Chains

Given a Markov Chain, we want to compute the probability that a path of length
k starting from a given initial state q reaches a state s satisfying a given boolean
formula φ (i.e. φ(s) = 1). If φ models an error condition the above computation
allows us to compute the probability of reaching an error condition in at most
k transitions.

Problem 1. Let M = (S,P, q) be a Markov Chain, k ∈ N, and φ be a boolean
function on S. We want to compute: P (M, k, φ) = Pr((∃i ≤ k φ(π(i))) | π ∈
Path(M)) That is, we want to compute the probability of reaching a state sa-
tisfying φ in at most k steps in Markov Chain M (starting from M initial state
q).

Definition 2. Let M = (S,P, q) be a Markov Chain and let φ be a boolean
function on S, i.e. φ : S → B. We define Markov Chain Mφ as follows.

Mφ = (S,Pφ, q), where for all s, t ∈ S, Pφ(s, t) =

P(s, t) if ¬φ(s)
1 if φ(s) ∧ (s = t)
0 if φ(s) ∧ (s �= t)

In other words, Markov Chain (S,Pφ, q) is obtained from (S,P, q) by remo-
ving all outgoing edges from any state s satisfying φ (error state) and replacing
such outgoing edges with just one edge leading back to s. Thus, once an error
state is entered there is no way to leave it. This, in turn, means that for (S,Pφ, q)
the probability of reaching in exactly k steps a state satisfying φ is exactly the
same as the probability of reaching in at most k steps a state satisfying φ. Note
that according to item 1 of Definition 1 (S, Pφ, q) is indeed a Markov Chain.

From the above considerations follow that P (M, k, φ) can be computed from
Pφ as shown in Proposition 1. Essentially Proposition 1 is a specialization to
our finite horizon case of known results on PCTL Model Checking of Markov
Chains (e.g. [13,1]).

Proposition 1. Let M = (S,P,q), and let φ be a boolean function on S. Then
P (M, k, φ) = Pr((∃i ≤ k φ(π(i))) | π ∈ Path(M)) =

∑
s:φ(s)(qPφ

k)s

398 G. Della Penna et al.

1 2

0.2

0.7

0.8 0.3

Fig. 1. A Markov Chain

Let φ be defined as follows: φ(s) =
(s = 2), i.e. only state 2 satisfies φ.

Then Pφ =
[

0.8 0.2
0.0 1.0

]

.

From Theor. 1 we have: P (M, 1, φ) =
0.2; P (M, 2, φ) = 0.36; P (M, 3, φ) =
0.488.

Example 1. Consider Markov Chain M = (S,P,q) with S = {1, 2}, P =[
0.8 0.2
0.7 0.3

]

and q = [1 0] (i.e. distribution q denotes state 1). The usual automata-

like representation for M is given in Fig. 1.

4 Probabilistic Finite State Systems

The Markov Chain Definition in Definition 1 is appropriate to study mathema-
tical properties of Markov Chains. However Markov Chains arising from pro-
babilistic concurrent systems are usually defined using a suitable programming
language rather than a stochastic matrix. As a matter of fact the (huge) size of
the stochastic matrix of concurrent systems is one of the main obstructions to
overcome in probabilistic model checking.

Thus a Markov Chain is presented to a model checker by defining (using
a suitable programming language) a next state function that returns the nee-
ded information about the immediate successors of a given state. The following
definition formalizes this notion.

Definition 3. A Probabilistic Finite State System (PFSS) S is a 3-tuple
(S, q, next), where: S is a finite set (of states), q ∈ S and next is a function
taking a state s as argument and returning a set next(s) of pairs (t, p) s.t.∑

(t,p)∈next(s) p = 1.

To a PFSS we can associate a Markov Chain in a unique way.

Definition 4. 1. Let S = (S, q, next) be a PFSS. The Markov Chain
Smc = (S,P, q) associated to S is defined as follows: P(s, t) ={

p if (t, p) ∈ next(s)
0 otherwise

2. Given k ∈ N and a boolean function φ on S we write P (S, k, φ) for
P (Smc, k, φ) as defined in Problem 1. Thus Problem 1 for PFSSs becomes:
given a PFSS S compute P (S, k, φ).

Given a PFSS S we want to compute P (S, k, φ) without generating the tran-
sition matrix for Markov Chain Smc. Using Proposition 1 this can be done as
shown in Proposition 2.

Proposition 2. Let S = (S,q, next) be a PFSS, k ∈ N and φ be a boolean
function φ on S. Then P (S, k, φ) can be computed as shown in Fig. 2.

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 399

//For i = 1, . . . k + 1, Q(i) is a queue of state-probability pairs (s, p);
P ((S, q, next), k, φ) { i = 1; r = 0; enqueue(Q(i), (q, 1));
forall i = 1 . . . k do { while (Q(i) is nonempty) { (s, p) = dequeue(Q(i));

forall (t, a) ∈ next(s) do { if φ(t) { r = r + p ∗ a; }
else enqueue(Q(i + 1), (t, p ∗ a)); } } } return(r); }

Fig. 2. Computation of P (S, k, φ).

Proof. (Sketch). Let M = Smc = (S,P,q). Consider the following sequence of
distributions: y(0) = q, y(i+1) = y(i)Pφ for i = 0, . . . k. From Proposition 1 we
have that

∑
s:φ(s) y

(k+1)(s) = P (Smc, k, φ). Moreover, from Fig. 2 we have that
for all i = 1, . . . k + 1, and for all s ∈ S′, y(i)(s) �= 0 iff (s,y(i)(s)) ∈ Q(i).
Note that states s s.t. φ(s) = 1 are not enqueued. In fact, by Definition 2, the
only state reachable form such a state s is s itself. Thus, from Definition 2 of
Pφ, we have that the value r returned by P ((S, q, next), k, φ) in Fig. 2 is exactly
P (Smc, k, φ).

Remark 1. Given a PFSS S = (S, q, next), k ∈ N, a boolean function φ on S and
a probability threshold p, in Section 5, exploiting Proposition 2, we will present
an efficient disk based algorithm to check if it holds that P (S, k, φ) < p. In other
words, our algorithm checks validity of a Finite Horizon Probabilistic (FHP)
Safety Property. FHP safety properties are a very important class of properties.
This motivates our disk based algorithm.

Of course a FHP safety property can be easily defined with a PCTL [13] for-
mula, namely P<p[true U≤kφ]. Thus also the probabilistic model checker PRISM
[25] can be used to verify FHP safety properties.

Note however that PRISM can handle all PCTL formulas, whereas our al-
gorithm can only handle FHP safety properties. In particular PRISM can verify
properties like P<p[true Uφ] (the probability of reaching a state satisfying φ is
less than p). Such unbounded horizon properties cannot be handled with our
algorithm.

5 Analysing Probabilistic Systems with the Murϕ
Verifier

Building on the computation scheme in Fig. 2, in the following we describe
an efficient disk based algorithm to verify FHP-safety properties, as well as
an implementation of such an algorithm within the Murϕ verifier. We call the
resulting tool FHP-Murϕ (Finite Horizon Probabilistic Murϕ).

5.1 Functions and Data Structures

FHP-Murϕ input defines a PFSS S = (S, q, next) to which we will refer in the
sequel. The FHP-Murϕ keyword startstate defines S initial state q. Indeed,
Murϕ can have a set of initial states, however, w.l.o.g. in the following we assume

400 G. Della Penna et al.

int k; /* is the horizon, i.e. the max allowed number of steps
to reach a state violating our invariant */

boolean Phi(state s); state_probability_pairs next(state s);
Queue Q_old, Q_new; Cache M;
double prob_Phi; /* incrementally stores the probability of

violating the invariant in at most k steps */
double max_prob_Phi; /* is the max allowed value for prob_Phi */

Fig. 3. Functions and Data Structures

we have just one initial state. FHP-Murϕ keyword invariant defines the boolean
function φ on S as well as the probability threshold β s.t. P (S, k, φ) < β must
hold (Remark 1).

The meaning of the declarations in Fig. 3 is as follows. Constant k (imple-
menting k) is our verification horizon and is given to FHP-Murϕ as a command
line parameter. Functions Phi() implements φ. Function next() is the nextstate
function of the PFSS S defined by FHP-Murϕ input. Thus function next() ta-
kes a state s as argument and returns the set next(s) of pairs (t, p) s.t. s goes
to t with probability p. Queues Q old and Q new are used to store distributions.
Thus queue elements are pairs (s, p) where s is a state and p is the probability
of reaching s from the initial state of S. Such queues play, respectively, the same
role as queues Q(i) and Q(i + 1) in the while loop in Fig. 2. Queues Q old and
Q new are the only place in which state explosion may occur in our algorithm.
For this reason we implement them on disk analogously to [31]. This allows us
to handle fairly large state spaces. The hash table M is a cache whose entries are
pairs (s, p) as for queues Q old, Q new. Constant max prob Phi (implementing β)
defines our probability threshold, i.e. the max allowed value for the probability
prob Phi of reaching (within the given horizon k) an error state (i.e. a state s
s.t. Phi(s) = true).

Note that from the above discussion follows that Murϕ hash compaction (-c)
[21] has no effect in FHP-Murϕ since no FHP-Murϕ data structure uses state
signatures [29,30].

5.2 Functions Search() and Insert()

Our main function Search() is shown in Fig. 4. This function efficiently imple-
ments the computation described in Fig. 2.

Function Insert() is shown in Fig. 4. This function uses a cache table M
in RAM to save queue space and thus computation time. M[h] returns the pair
(s, p) stored in entry h of M. M[h].state denotes s and M[h].prob denotes p.

Every time it is necessary to enqueue a new pair (state s, probability p),
Insert(s, p) is called. If state s is already stored in cache M, we simply update
the stored probability in M, adding p to it. If state s is not stored in M, we check
if the slot in M in which we have to put s is free. If it is free then we insert pair
(s, p) in M. If it is not free, we call function Checktable() to empty M and then
we insert pair (s, p) in M.

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 401

int Search() {
prob_Phi = 0;
enqueue(Q_old, (q, 1)); /* enqueue initial state q */
for (level = 1; level <= k; level++) {
clear cache table M;
while (Q_old is not empty) {
(s, p) = dequeue(Q_old);
for all (s’, a) in next(s) {
if (Phi(s’)) {
prob_Phi = prob_Phi + p*a;
if (prob_Phi >= max_prob_Phi)
return(0); /* property does not hold */

} else Insert(s’, p*a);
} /* for all */

} /* while, level terminated, Q_old is empty */
Checktable();
swap Q_new with Q_old ; /* now, Q_new is empty */

} /* for */
return(1); /* property holds */

} /* Search() */

Insert(state s, double p) {
if (s is in M) {
h = hash(s);
prob = M[h].prob + p;
M[h] = (s, prob); /* new probability of s is prob */

} else {
collision = Insert_in_table(s, p);
if (collision) {
Checktable(); /* there is space to insert now */
Insert_in_table(s, p);

}
}

} /* Insert() */

boolean Insert_in_table(state s, double p) {
h = hash(s);
if (M[h] is free) {
M[h] = (s, p);
return true;

}
else return (M[h].state == s);

} /* Insert_in_table() */

Checktable() {
move M in Q_new and clear M; /* M is empty now */

} /* Checktable() */

Fig. 4. Functions: Search(), Insert(), Insert in table(), Checktable()

402 G. Della Penna et al.

If we were not using M, for each state s at level i we would have w copies
of s in the queue, where w is the number of paths of length i leading to state
s from initial state q. Using M rather than w copies of s we have just one or
slightly more than one (depending on how large is M). This saves queue space
as well as computation time. Hence, the more RAM available for M, the less our
duplicated states, queue sizes, number of states to be explored and, finally, our
computation time. For this reason M should be as large as possible.

5.3 Functions Insert in table() and Checktable()

Function Insert in table() is shown in Fig. 4. Function Insert in table()
calculates the hash value h of s. If M[h] is a free slot, Insert in table() inserts
s and p in M[h] and returns true. If M[h] is not free, Insert in table() returns
false without inserting s and p in M.

Function Checktable() is shown in Fig. 4. It is the only function that en-
queues values in Q new; it simply flushes M into Q new.

Function Checktable() is used by function Insert() to free M when a colli-
sion occurs. It is also called at the end of the while in function Search() (Fig.
4) to enqueue in Q new the states visited after the last call to function Insert(),
so that all states reached in the current level will be expanded in the next one.

6 Experimental Results

To show effectiveness of our approach we run two kind of experiments.
First, in Section 6.1, we compare FHP-Murϕ with the probabilistic model

checker PRISM [25].
Second, in Section 6.2, we run FHP-Murϕ on a quite large probabilistic

hybrid systems. Since our main goal is to use FHP-Murϕ on hybrid systems,
this second kind of evaluation is very interesting for us.

6.1 Probabilistic Dining Philosophers

In this Section we give our experimental results on using FHP-Murϕ on the
probabilistic protocols included in PRISM distribution [25]. We do not consider
the protocols that lead to Markov Decision Processes or to Continuous Time
Markov Chains, since FHP-Murϕ cannot deal with them. Hence we only consider
Pnueli-Zuck [23] and Lehmann-Rabin [20,26] probabilistic dining philosophers
protocols. Moreover, we modify PRISM definitions for such protocols in order to
have a finite horizon property to verify with FHP-Murϕ. In fact, FHP-Murϕ is
unable to verify the PCTL properties for these protocols included in the PRISM
distribution, since they are not of the required (finite horizon probabilistic safety)
form P<p[true U≤kφ].

Finally, FHP-Murϕ definitions for such protocols have been obtained by
translating into FHP-Murϕ their PRISM (modified) definitions so that for each

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 403

protocol, FHP-Murϕ and PRISM definitions specify exactly the same Markov
Chain.

Our modifications to PRISM protocols consist in adding variables to count
the number of times that a philosopher fails in getting both forks. We then verify
that these counters are always less than a given maximum threshold (MAX CONT
in the following) with a given probability. This corresponds to verify quality of
service properties, which are very frequent in practice. E.g., in the Pnueli-Zuck
protocol, we changed the code fragment in Fig. 5 with the one in Fig. 6.

We want to know the probability P (MAX CONT, k) of a counter reaching
MAX CONT in at most k (horizon) steps. We set k = 20 as our finite horizon (this
value occurs in a property of the Lehmann-Rabin protocol in PRISM distribution
[25]).

Fig. 7 shows the PCTL property to be verified stating that the probability
that a counter reaches MAX CONT has to be at most p. We set p = 1 since for
computing P (MAX CONT, k) the value of p does not matter.

In Fig. 8 we have the FHP-Murϕ code corresponding to the PRISM code
fragment of Fig. 6. Of course FHP-Murϕ input language is the same as Murϕ
one [21], only FHP-Murϕ has probabilities rather than booleans on rule guards.
FHP-Murϕ invariant invariant p γ requires that with probability at least p
“all states reachable in at most k steps from the initial state satisfy γ” (k is
FHP-Murϕ horizon). Thus, using the notation in Section 5 we have that: φ =
¬γ and the probability threshold (max prob Phi in Fig. 3) is (1 − p).

Note that in Fig. 8 the probability threshold for FHP-Murϕ invariant is 0,
so that FHP-Murϕ will not stop verification before completing all levels of the
BF computation. This forces FHP-Murϕ to compute P (MAX CONT, k).

To assess FHP-Murϕ effectiveness in Figs. 9, 10 we compare the results
obtained with FHP-Murϕ and with PRISM on, respectively, Pnueli-Zuck and
Lehmann-Rabin protocols (modified as described above).

From Fig. 9 we can see that, for Pnueli-Zuck algorithm, when NPHIL = 5
(5 philosophers) and MAX CONT is 4, PRISM is unable to complete any verifica-
tion within 2GB of RAM, independently on which of the 3 PRISM verification
algorithms (totally MTBDD based, algebraic and hybrid) is chosen. Similarly,
for the Lehmann-Rabin algorithm, in Fig. 10 we see that when NPHIL is 4, and
MAX WAIT is 3, then PRISM is unable to complete the verification task in the
same environment as above.

FHP-Murϕ was always able to complete all given verifications tasks. Note
however that, as it can be seen from Figs. 9 and 10, for the verifications tasks
in which PRISM terminates, PRISM is always faster than FHP-Murϕ.

Our experimental results show that for probabilistic protocols involving arith-
metical computations FHP-Murϕ is to be considered among the available (and
valuable) tools for automatic finite horizon analysis of safety properties.

As for the numerical quality of FHP-Murϕ we have that when both PRISM
and FHP-Murϕ terminate both give the same value for P (MAX CONT, k) (column
Probability in Figs. 9, 10).

404 G. Della Penna et al.

module phil1
p1: [0..10] init 0;

.
[] p1=6 -> (p1’=1);
[] p1=7 -> (p1’=1);

.
[] p1=10 -> (p1’=0)

endmodule

Fig. 5. Pnueli-Zuck algorithm fragment to be modified in PRISM.

module phil1
p1: [0..10] init 0;
cont1: [0..3] init 0;

.
[] p1=6 & cont1!=MAX_CONT -> (p1’=1) & (cont1’=cont1+1);
[] p1=6 & cont1=MAX_CONT -> (p1’=1);
[] p1=7 & cont1!=MAX_CONT -> (p1’=1) & (cont1’=cont1+1);
[] p1=7 & cont1=MAX_CONT -> (p1’=1);

.
[] p1=10 -> (p1’=0) & (cont1’=0);

endmodule

Fig. 6. Pnueli-Zuck algorithm modified fragment in PRISM.

P>=1.0 [true U<=20 ((cont1 = MAX_CONT) | (cont2 = MAX_CONT) |
(cont3 = MAX_CONT))]

Fig. 7. PCTL formula in PRISM.

function calc_prob(i : 1..NPHIL; c : 0..10) : prob;
-- probability that p[i] becomes c, NPHIL is the number of philosophers
begin
switch p[i] -- p[1] corresponds to PRISM p1, p[2] to PRISM p2 etc

.
case 6: if (c = 1) then return 1.0 / NPHIL; else return 0.0; endif
case 7: if (c = 1) then return 1.0 / NPHIL; else return 0.0; endif

.
endswitch; end;

ruleset philosophers : 1..NPHIL do ruleset next : 0..10 do rule "next"
calc_prob(philosophers, next) ==> begin
p[i] := c;
-- cont[1] corresponds to PRISM cont1, cont[2] to PRISM cont2 etc
if (c = 1 & (p[i] = 6 | p[i] = 7) & (cont[i] != MAX_CONT))
then cont[i] := cont[i] + 1; endif;

if (p[i] = 10 & c = 0) then cont[i] := 0; endif; end; end; end;

invariant "starvation" 0.0
forall i : 1..NPHIL do (cont[i] != MAX_CONT) endforall;

Fig. 8. Pnueli-Zuck algorithm in FHP-Murϕ.

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 405

NPHIL MAX WAIT Probability Murϕ memory PRISM memory Murϕ time PRISM time
3 3 7.335194164e-05 200 0.9057 51.970 1.487
3 4 6.883132778e-10 200 1.6844 52.610 2.507
4 3 1.88985976e-06 200 28.1066 242.940 28.72
4 4 2.910383046e-12 200 66.2659 244.170 71.112
5 3 9.164495139e-08 200 916.8246 1408.290 1023.468
5 4 4.194304e-14 200 N/A 1412.210 N/A
8 3 1.210429649e-10 1000 N/A 213790.740 N/A

Fig. 9. Results on a machine with 2 processors (both INTEL Pentium III 500Mhz)
and 2GB of RAM. Murϕ options: -b (bit compression), -m200 (use exactly 200MB of
RAM), -maxl20 (the finite horizon is 20). The last verification had -m1000 (use exactly
1GB of RAM). PRISM options: default options. N/A means that PRISM was unable
to complete the verification; in this case, also the -m and -s (totally MTBDD and
algrebraic verification algorithm respectively) have been used, with the same result.
Memory occupations are in MB, time is in seconds.

NPHIL MAX WAIT Probability Murϕ memory PRISM memory Murϕ time PRISM time
3 3 4.8039366e-06 800 39.0625 1040.330 84.556
3 4 0. 800 70.1483 1041.700 121.147
4 3 5.609882064e-08 800 N/A 34307.740 N/A

Fig. 10. W.r.t. Fig. 9, the only change is in the Murϕ option -m800 (use exactly
800MB of RAM).

6.2 Analysis of a Probabilistic Hybrid Systems with FHP-Murϕ

In this section we show our experimental results on using FHP-Murϕ for the
analysis of a real world hybrid system. Namely, the Control System for the Gas
Turbine of a 2MW Electric Co-generative Power Plant (ICARO) in operation at
the ENEA Research Center of Casaccia (Italy).

Our control system (Turbogas Control System, TCS, in the following) is the
heart of ICARO and is indeed the most critical subsystem in ICARO. Unfortu-
nately TCS is also the largest ICARO subsystem, thus making the use of model
checking for such hybrid system a challenge.

In [22] it is shown that by adding finite precision real numbers to Murϕ,
we can use Murϕ to automatically verify TCS. In particular in [22] it has been
shown the following. If the the speed of variation of the user demand for electric
power (MAX D U in the following) is greater than or equal to 25 (kW/sec), TCS
fails in maintaining ICARO parameters within the required safety ranges.

A TCS state in which one of ICARO parameters is outside its given safety
range is of course considered an error state.

In [22] the user demand has been modeled rather roughly, using nondetermi-
nistic automata. Here we show that using FHP-Murϕ we can define and, more
importantly, automatically analyse, a more accurate model for the user demand
by modeling it using a Markov Chain.

To do this we define a function p(u, i) as follows:

p(u, i) =

0.4 + β (u−M)|u−M |
M2 if i = 1

0.2 if i = 0
0.4 + β (M−u)|u−M |

M2 if i = −1
(1)

406 G. Della Penna et al.

ruleset d_u : -1..1 do /* disturbance: takes values -1, 0 and 1 */
rule "time step" user_demand(u, d_u) ==> main(u, d_u);

end; -- user demand disturbance

Fig. 11. Rulesets with probabilistic user demand

MAX D U Reachable
States

Rules
Fired

Finite
Horizon

CPU
Time

Probability

25 3018970 8971839 1600 68562.570 7.373291768e-05
35 2226036 6602763 1400 50263.020 1.076644427e-04
45 1834684 5439327 1300 41403.150 9.957147381e-05
50 83189 246285 900 2212.360 3.984375e-03

Fig. 12. Results on a machine with 2 processors (both INTEL Pentium III 500Mhz)
and 2GB of RAM. Murϕ options used: -b (bit compression), -m500 (use 500 MB of
RAM). Time is given in seconds.

where M =MAX U (maximum user demand value) and α =MAX D U.
Denoting with u(t) the user demand value at time t we can define the (sto-

chastic) dynamics for the user demand as follows:

u(t + 1) =

min(u(t) + α, M) with probability p(u(t), 1)
u(t) with probability p(u(t), 0)

max(u(t) − α, 0) with probability p(u(t), −1)
(2)

In this way, we have that the further u(t) from u0, the higher the probability
to return towards u0, i.e. to decrement u(t) if u(t) > u0 and to increment it
otherwise.

To see that (2) is indeed a Markov Chain, it is sufficient to observe
that, ∀β, the sum of the outgoing transitions is obviously 1. Moreover, since
(u(t)−M)|u(t)−M |

M2 ≤ 1, as long as −0.4 ≤ β ≤ 0.4 holds, all probability values are
between 0 and 1.

With FHP-Murϕ the definition of Markov Chain (2), starting from the TCS
model, is quite simple. This is done in Fig. 11, where user demand(u, d u)
computes p(u, d u) (1) and function main updates the system state, in particular
updates u as described in (2).

In Fig. 12 we report the results of some verification runs done by FHP-Murϕ
with β = 0.4.

We are interested in cases where the error probability is greater than 0 (zero).
From the results in [22] we know that this is the case if we choose MAX D U greater
than or equal to 25 and the horizon value no smaller than the transition graph
diameter. In our experiments here we choose our horizon as follows. Let Diam(n)
be the diameter of TCS transition graph when MAX D U = n. We set our horizon
k to be equal to �Diam(n)

100 	100. In this way we check the error probability in the
error neighborhood.

Fig. 12 allows us to evaluate the probability of reaching an error state when
MAX D U is greater than or equal to 25. Note that such a probability is rather

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 407

small, suggesting that in many cases setting MAX D U to 25 may be acceptable.
This kind of evaluations are not possible with the nondeterministic verification
of TCS carried out in [22].

7 Conclusions

We presented (Sections 3, 4) an explicit disk based verification algorithm for
Probabilistic Systems defining discrete time/finite state Markov Chains. Given
a Markov Chain and an integer k (horizon) our algorithm checks that the proba-
bility of reaching a given error state in at most k steps is below a given probability
threshold.

We presented (Section 5) an implementation of our algorithm within a sui-
table extension of the Murϕ verifier that we call FHP-Murϕ (Finite Horizon
Probabilistic-Murϕ).

We presented (Section 6) experimental results comparing FHP-Murϕ with
(a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker
for Markov Chains. Our experimental results show that FHP-Murϕ can handle
systems that are out of reach for PRISM, namely those involving arithmetic
operations on the state variables (e.g. hybrid systems).

Future work includes extending our approach to other models (e.g. Conti-
nuous Time Markov Chains) as well as to other kinds of PCTL formulas, e.g.
formulas with unbounded until.

References

[1] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. Automata, Languages and
Programming, pages 430–440, 1997.

[2] E. Behrends. Introduction to Markov Chains. Vieweg, 2000.
[3] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. In Proc. Foundations of Software Technology and Theoretical Computer
Science, volume 1026 of LNCS, pages 499–513. Springer, 1995.

[4] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, C–35(8), Aug 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98, 1992.

[6] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral trans-
forms for large boolean functions with applications to technology mapping. Proc.
30th ACM/IEEE Design Automation Conference, pages 54–60, 1993.

[7] url: http://vlsi.colorado.edu/∼fabio/.
[8] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state

probabilistic programs. In Proc. of FOCS’88, pages 338–345. IEEE CS Press,
1988.

[9] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, 1995.

[10] L. de Alfaro. Formal verification of performance and reliability of real-time sy-
stems. Technical report, Stanford University, 1996.

408 G. Della Penna et al.

[11] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a
hardware design aid. In IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 522–5, 1992.

[12] H. Hansson. Time and Probability in Formal Design of Distributed Systems. El-
sevier, 1994.

[13] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6:512–535, 1994.

[14] S. Hart and M. Sharir. Probabilistic temporal logic for finite and bounded models.
In Proc. of 16th ACM Symposium on Theory of Computing, pages 1–13. ACM,
1984.

[15] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
New Jersey, 1991.

[16] G. J. Holzmann. The spin model checker. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997.

[17] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic mo-
del checker. In P. Kemper, editor, Proc. Tools Session of Aachen 2001 Interna-
tional Multiconference on Measurement, Modelling and Evaluation of Computer-
Communication Systems, pages 7–12, September 2001. Available as Technical
Report 760/2001, University of Dortmund.

[18] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with prism: A hybrid approach. In Proc. TACAS’02, volume 2280. LNCS,
Springer Verlag, April 2002.

[19] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

[20] D. Lehmann and M. Rabin. On the advantages of free choice: A symmetric fully
distributed solution to the dining philosophers problem (extended abstract). Proc.
8th Symposium on Principles of Programming Languages, pages 133–138, 1981.

[21] url: http://sprout.stanford.edu/dill/murphi.html.
[22] G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A. Parisse,

E. Tronci, and M. V. Zilli. Automatic verification of a turbogas control system
with the murphi verifier. In Proc. of 6th International Workshop on: Hybrid Sy-
stems: Computation and Control (HSCC), LNCS, Prague, Czech Republic, April
2003. Springer.

[23] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, 1(1):53–72, 1986.

[24] A. Pnueli and L. Zuck. Probabilistic verification. Information and Computation,
103:1–29, 1993.

[25] url: http://www.cs.bham.ac.uk/∼dxp/prism/.
[26] N. Lynchand I. Saias and R. Segala. Proving time bounds for randomized dis-

tributed algorithms. In Proc. 13th ACM Symposium on Principles of Distributed
Computing, pages 314–323, 1994.

[27] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Proc. of CONCUR, number 836 in LNCS, pages 381–496. Springer, 1994.

[28] url: http://netlib.bell-labs.com/netlib/spin/whatispin.html.
[29] U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction.

In IFIP WG 10.5 Advanced Research Working Conference on: Correct Hardware
Design and Verification Methods (CHARME), pages 206–224, 1995.

[30] U. Stern and D. L. Dill. A new scheme for memory-efficient probabilistic verifica-
tion. In IFIP TC6/WG6.1 Joint International Conference on: Formal Description
Techniques for Distributed Systems and Communication Protocols, and Protocol
Specification, Testing, and Verification, 1996.

Finite Horizon Analysis of Markov Chains with the Murϕ Verifier 409

[31] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting tran-
sition locality in automatic verification. In IFIP WG 10.5 Advanced Research
Working Conference on: Correct Hardware Design and Verification Methods (CH-
ARME). LNCS, Springer, Sept 2001.

[32] M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proc. of FOCS’85, pages 327–338. IEEE CS Press, 1985.

	Introduction
	Basic Notation
	Finite Horizon Safety Verification of Markov Chains
	Probabilistic Finite State Systems
	Analysing Probabilistic Systems with the Mur$varphi $ Verifier
	Functions and Data Structures
	Functions texttt {Search()} and texttt {Insert()}
	Functions texttt {Insert_in_table()} and texttt {Checktable()}

	Experimental Results
	Probabilistic Dining Philosophers
	Analysis of a Probabilistic Hybrid Systems with FHP-Mur$varphi $

	Conclusions

